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Abstract- Thermal deformations and stresses in cross-ply laminated circular cylindrical shells are
investigated. The state space approach is used to solve exactly the thermoelastic governing equations
of the third-order. first-order and classical theories for arbitrary boundary conditions. To illustrate
the thermoelastic behavior. exact analvtical solutions for deflections and stresses are obtained for
laminated circular cylindrical shells u~dergoing unifoml and linearly varying temperature fields
through the thickness while having sInusoidal distribution of thermal loading. Copyright ( 1996
Elsevier Science Ltd

INTRODUCTIOl"

Composite materials have found increasing application in many engineering structures.
The applications range from the design of machines to high performance aircrafts. The
strength and light-weight requirements of space structures have created considerable interest
in the study of laminated circular cylindrical shells. It is further fuelled by the fact that the
classical lamination shell theory based on the Love-Kirchhoff assumptions is adequate to
predict the gross behavior of thin laminates. When the structures are rather thick or when
they exhibit high anisotropy ratios, the transverse shear deformation effect has to be
incorporated. In such cases more refined theories are needed.

The analysis of the thermal response of plate and shell structures has been the subject
of significant research interest in recent years [see Pell (1946), Stavsky (1963), Wu (1978),
Kalam and Tauchert (1978). Reddy and Hsu (1980), Wu and Tauchert (1980a,b), Hyer
and Cooper (1986), Kardomateas (1989), Khdeir and Reddy (1991), Khdeir et al. (1992)].
The problem of thermal bending of anisotropic plates was first studied by Pell (1946), who
derived the equations governing the transverse deflection of a thin plate. Generalization of
Pell's work to heterogeneous plates subjected to arbitrary three-dimensional temperature
distribution is due to Stavsky (1963), who obtained the deformation and stresses in a thin
rectangular plate. simply supported along two infinitely long edges and subject to uniform
heating. Thermally induced deformations and stress resultants in symmetric laminated
plates are analyzed by Wu and Tauchert (l9t\Oa). The method of Levy is used to study the
transverse bending of specially orthotropic laminates having two opposite edges simply
supported and subject to a temperature distribution using the classical laminate theory. A
finite element formulation of the equations of the first-order theory ofanisotropic composite
plates subjected to thermal and mechanical loadings is presented by Reddy and Hsu (1980).
Formulations and solutions for the thermal stresses in orthotropic cylinders have been
presented by Kalam and Tauchert (1978) due to a steady-state plane temperature distri­
bution. A linear elasticity solution for determining the response of cross-ply composite
tubes subjected to a circumferential temperature gradient of the form I1To+I1T, cos(8) is
presented by Hyer and Cooper (1986). Temperature-independent material properties are
assumed and displacement approach is used. The same approach is used by Kardomateas
(1989) to find stresses and displacements in an orthotropic. hollow circular cylinder, due
to an imposed constant temperature on the one surface and heat convection into a medium
of a different constant temperature at the outer surface.

Analytical solutions are proposed by many investigators for the case of simply sup­
ported edge conditions with different formulations [see Wu and Tauchert (1980b), Reddy
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and Hsu (1980)]. This case is often used in the literature as a test case. Thermoelastic
coupling of the governing equations of laminated plates is investigated in Wu and Tauchert
(1980b) for simply supported edge conditions and in [Khdeir and Reddy (1991), Khdeir et
al. (1992)] for cross-ply laminated plates and shallow shells whose two opposite edges
are simply supported and the remaining ones have arbitrary combinations of boundary
conditions using refined theories. For other types of boundary conditions and for more
arrangements of lamina, approximate methods such as the Rayleigh-Ritz technique and
finite element are used in Wu (1978) and Reddy and Hsu (1980), respectively.

The objectives of this paper are to offer an exact solution based on the state space
approach to analyze the thermal response of cross-ply laminated circular cylindrical shells
for arbitrary boundary conditions and to establish the correlation between classical and
refined shell theories.

GOYERNI'\iG EQUATIONS

The governing equations of the third-order theory (HSDT) of Reddy and Liu [see
Reddy and Liu (1985), Khdeir et al. (1989)] as applied to a circular cylindrical shell of
length L, radius R and thickness hare

(I)

where nl = 4;N and n2 = nl/3. Here (u, 1', II') are the displacements along the axes XI (axial),
X~ (circumferential) and ~ (radial), respectively; rPl and rP2 are the rotations about the X2

and XI-axes, q is the distributed transverse mechanical load, and IV" M h ... are the stress
resultants

(2)

The stress-strain relations for the kth lamina in the laminate coordinate are given by

0'1 Qil Ql2 0 0 0 GI -:XII f'l.T

0'2 Q22 0 0 0 G2 - :X 22 f'l.T

0'0 Qoo 0 0 Go (3)

0'4 symm. QH 0 G4

a., (k I Q55 (kJ G- Ikl)

where Q;7 J are the material constants of the kth lamina in the laminate coordinate system
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and a\'/ and y.~'J are the coefficients of linear thermal expansion for layer k in the laminate
coordinate; t-.T denotes the temperature rise in the laminate and is given by:

(4)

The linear strain-displacement relations are:

where

(5)

,.0
"1

au
aX I

I\J =

.0 81' au
1:'0 = -,- + -,- .

eX I ('Xc
(6)

The resultants are related to the total strains by:

where A", Bu' etc. are the laminate stiffnesses.

(8)

(9)

for i, j = I, 2, 4, 5. 6, and the thermal forces and moments are defined by
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{
lVi, Mi, Pi} S J;' [Q\ki

rT T T =I IkJ
Iv ". A1" • p" k ~ j ;, I QI "

QlkJ] {:X lkJ
}

j" I j (1. CC) f1 T d(.
Q (k) (k)

12 ~21

(10)

The governing equations of the first-order shear deformation theory (FSDT) can be
deduced from those of the third-order theory (HSDT) by setting nl = n2 = 0, and the
classical theory (CST) is obtained from the first-order theory by setting

(/11'
cPi = -::;-- (i = L 2).

eX i

ANALYTICAL FORMULATION

(11 )

The state space approach is used to analyze the thermal bending ofcross-ply laminated
composite circular cylindrical shells for all boundary conditions. The edges (XI = ± Lj2)
may have arbitrary combinations of free. clamped and simply supported edge conditions.
A sinusoidal distribution of the thermal loadings will be considered [see Reddy and Hsu
(1980)], which for the present case takes the form:

{To} {to}T
I

= t
l

COS:XX I cos f3x". (12)

The displacement quantities will be expressed as products of undetermined functions and
known trigonometric functions so as to satisfy the governing eqns (1) and loading conditions
(12) :

U(X I • x") = U(x l ) cos f3x"

r(xl.x") = V(xdsinf3x"

l1'(x I .x") = W(xl)COS{3X2

cPj(X j .x2) = <PI(xl)cos{fx"

cP2(X j • X2) = <p"(x l ) sin {3X2 (13)

where:x = n/Land f3 = 1/R ; the mechanical loading q is set to zero throughout the analysis.
Substitution ofeqns (12) and (13) into the governing equations of the HSDT theory

results in the following system of equations

U" = Cl U + C" V' +(', W' +C4 W'" +c,<1J I+ c6 <P; +gl sin n' l

V" = C7U'+C~V+CyW+CIOW"+CII<1J~ +cI"<p"+g"cos:xx l

W"" = Cj,U'+CI4V+C15W+CI6W"+CI7<P'1 +Cl~<P"+g3COS:XXI

where a prime on a quantity denotes the derivative with respect to XI' The coefficients gj in
eqn (14) are defined as follows:

gl = (e,f~ -e,ofl )1.'0

g2 = (e l ".I~ -eH.lJ;co

g4 = (e2dl - e l f~ )/eo

g, = (e17f~ -el o.l5)/CO

g3 = ao (g" a l +g, a2 -.I~ + :xc" I g I +:XC23g4) (15)
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Thermoelastic analysis of laminated shells 4011

I] = -a(L l t o+L2td

12 = -f3(L3t O+L41])

13 = n2[ - CJ.2(L 7 to + L st l ) - 132(L9to + Llotd] - (L 3to + L 4tl)/R

f~ = -a(L2to +Lst])+n2 a(L 7 to +Ls t l )

f~ = -f3(L4tO+LJ])+n2f3(L9tO+Llotd. (16)

L i appearing in eqn (16) are defined by :

(17)

The coefficients Ci , ei and ai in eqns (14), (15), and (16) are presented in Khdeir (1995).
In order to reduce the system of eqns (14) to a state form, the components of the state

vector {Y(XI)} [see Brogan (1985), Franklin (1968)] associated with HSDT theory are
defined as

Y I = U, Y2 = U', Y3 = V, Y4 = V', Ys = W, Y6 = W',

Y7 = W", Ys = W''', Y9 = <1>], Y]O = <1>'1, Y I] = <1>2, Y I2 = <1>;. (18)

Using (18), and after some algebraic manipulation, the system ofeqns (14) may be expressed
in the form

{y,} = [A]{Y} + {r} (19)

where the matrix [A] will be defined as:

0 I 0 0 0 0 0 0 0 0 0 0

C I 0 0 C2 0 C 0 C4 Cs 0 0 C63

0 0 0 I 0 0 0 0 0 0 0 0

0 C7 C8 0 C9 0 CIO 0 0 CII C] 2 0

0 0 0 0 0 I 0 0 0 0 0 0

0 0 0 0 0 0 I 0 0 0 0 0

0 0 0 0 0 0 0 I 0 0 0 0
(20)

0 C I3 C I4 0 CIS 0 Cl6 0 0 C l7 CI8 0

0 0 0 0 0 0 0 0 0 I 0 0

CI9 0 0 C20 0 C21 0 ('22 C23 0 0 C24

0 0 0 0 0 0 0 0 0 0 0 I

0 C25 C26 0 C27 0 Cn 0 0 Cn C30 0

The elements of the load vector {r} are

{r} T = {O, g] sin CJ.X j, 0, g2 cos ax 10 0, 0, 0, g3 cos ax 1,0, g4 sin ax1,0, gs cos ax] }. (21 )

The solution to eqn (19) is given by [see Brogan (1985), Franklin (1968)]:
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[k]

o

o

el-I.:'. ('\1 --IJ)

[0] l{r(IJ)}dlJ. (22)

Here {kJ is a constant column vector to be determined from the edge conditions, where I.,
are the distinct eigenvalues of the matrix [A] while [0] denotes the matrix of eignevectors
of[A].

The following boundary conditions for simply supported (S), clamped (C) and free
(F) at the edges XI = ±LI2 for the HSOT theory are used in the analysis:

ClI'
c: u = r = \1' = ¢I = ¢2 = -~- = 0

eX I

(23)

Using (18) and (22), the displacement quantities will be found from eqn (13).
A similar procedure has been followed to find the thermal response ofcross-ply circular

cylinder shells using FSOT and CST theories. For the sake of conciseness it is not reported
in this paper.

NUMERICAL RESULTS AND DISCUSSION

To demonstrate the method developed in the present study, numerical results are
displayed to show the variation of thermal deformations and stresses with the variation of
loading, geometry, lamination, theory, number of layers and boundary conditions. The
numerical results have been obtained analytically and exactly by using eqns (22), (18), (13)
and (3) for the desired boundary conditions defined in (23). Symmetric and antisymmetric
cross-ply lamination schemes have been used. It was assumed that the thickness and the
material for all laminae are the same, having the following characteristics:

The shear correction coefficients K14 = K~) for the first-order theory are taken to be 5/6.
The notation C-F, for example, means that the edge, Xl = -L/2 is clamped and XI = L/2
is free.

The deflected shape of the circular cylindrical shell has been presented in Figs I and 2
for uniform and in Figs 3-5 for linearly varying temperature field through the thickness,
where the effect of boundary condition and number of layers is exerted. It is observed that
the C-F boundary condition gives the maximum thermal response for all lamination
schemes. It is interesting to see that for hinged-hinged circular cylindrical shells, the thermal
response is negative for 2 layer (0/90) antisymmetric cross-ply shells, while for 3 layer
(0/90/0),4 layer (0/90; ... ) and 10 layer (0/90/ .. .), the response is positive. For clamped­
clamped circular cylindrical shells subjected to uniform thermal loading through the thick­
ness. the symmetric cross-ply stacking sequence gives greater response than antisymmetric
cross-ply ones.



Thermoelastic analysis of laminated shells 4013

0.35

FSDT

2 Layer
3 Layer
4 Layer
10 Layer

/

/

I
I

I

L/R= 10
R/h=10

C-C
,-,-'

,/' /'

" /,/ /

I ,/ I
i 1

I ':J
/J

I ':1
I /J

;1

I /1
:1

I /J

I /1
:1

I ....1
:1

1/1
-;

Ii;

I
II

/1.

0.05

020

0.10

0.30

0.25

o
13:

0.15

0.00
-0.5 -0.3 0.3 0.5

Fig. 1. Deflected shape \1'" = 1\'(.\"O.~)h:;(, toR'.(t, = 0). along the axial length of a clamped­
clamped circular cylindrical shell.
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Fig. 2. Deflected shape II" = 1<'(.. ,. O. ~)h:7., til R', (t, = 0), along the axial length of a clamped-free
circular cylindrical shell.

The tables allow one to conclude the foHowing :

I. The state space approach used to provide exact solutions for the thermal response
of cross-ply circular cylindrical shell for arbitrary boundary condition has no limitations.
It can be used for thick and thin shells and it has been found to be of great computational
efficiency.
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Fig. 3. Deflected shape 1\', = )\·(x,. o. ~);~ It, R'. (to = 0). along the axial length of a hinged-hinged
circular cylindrical shell.
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Fig. 4. Deflected shape 1\', = )\·(x,. O. ~),~, t, R'. (to = 0). along the axial length of a clamped­
hinged circular cylindrical shell.

2. For a moderately thick circular cylindrical shell, the results for deflections and
stresses predicted by HSOT and FSOT are in excellent agreement and close to CST. For
thin shells three theories yield the same results because shear deformation has no effect.

Since the three theories have close results, it is preferable for the design engineer to use
the CST theory for the analysis of thermoelastic behavior of cross-ply laminated circular
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Fig. 5. Deflected shape )\', = \\·(x,. 0, ~)!:x, t, R~, (to = 0), along the axial length of a clamped-free
circular cylindrical shell.

Table I. Transverse deflection 1\'0 = 1"(0.0, (jh/:x, toR~, (t, = 0). of cross-ply
circular cylindrical shell for all boundary conditions. L/R = 10

»'0

Lamination Rh Theory S-S SC C-C C-F

0/90 HSDT 0.9900 0.6679 0.2269 -0.3689
10 FSDT 0.9902 0.6683 0.2269 -0.3694

CST 0.9867 0.6643 0.2248 -0.3692

HSDT 0.1205 0.0840 0.0338 -0.0551
100 FSDT 0.1205 0.0840 0.0338 -0.0551

CST 0.1205 0.0840 0.0338 -0.0551

0/90,0 HSDT 1.1284 0.8210 0.3273 -0.3266
10 FSDT 1.1284 0.8207 0.3272 -0.3268

CST 1.1280 0.8146 0.3250 -0.3287

HSDT 0.1186 0.0874 0.0348 -0.0493
100 FSDT 0.1186 0.0874 0.0347 -0.0493

CST 0.1186 0.0874 0.0347 -0.0493

cylindrical shells. The CST theory is more efficient in computation and analysis compared to
FSDT and HSDT and has no problems such as ill conditioned matrices during computation.
Moreover, in using the state space approach, the CST is easy to handle, since the order of
the state vector is 8 compared to 10 for FSDT and 12 for HSDT. Eight eigenvalues with 8
corresponding eigenvectors are needed to evaluate for CST compared to 10 for FSDT and
12 for HSDT.

Acknowledgement-The discussion with Prof. 1. N. Reddy about the effects of temperature on the response of
laminated composites when 1 was at Va. Tech is greatly acknowledged.
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Table2. Axial stress it, = 1T,(0.0.h2)hi:X' T"E,R. (T, = 0) ofcross-ply circular
cylindrical shell for all boundary conditions. L! R = 10

<1,

Lamination Rh Theory S S S-C C-C CF
--~~--------_.- ---~-

----_...----

090 HSDT -0.1811 -0.2122 -0.2555 -0.1885
10 FSDT -0.1811 -0.2122 -0.2556 -0.1886

CST ·-0.1811 -0.2122 -0.2556 -0.1886

HSDT -0.0187 -0.0217 -0.0258 -0.0188
100 FSDT -0.0187 -0.0217 -0.0258 -0.0188

CST -0.0187 -0.0217 -0.0258 -0.0188

0900 HSDT 0.2147 -0.4342 -1.5310 0.1684
10 FSDT 0.2147 - 0.4343 - 1.5310 0.1685

CST 0.2157 - 0.4353 - 1.530J 0.1691

HSDT 0.0111 -0.0518 -0.1583 0.0109
100 FSDT 0.0111 -0.0518 -0.1583 0.0109

CST (l.() III -0.0518 -0.1583 0.0109

Table 3. Circumferential stress it, = IT, (0. O. h 2)h:x, ToE,R. (T, = 0) of cross-
ply circular cylindrical shell for all boundary conditions. L· R = 10

it,

Lamination Rh Theory SS S-C C-C CF
- _ .._------- .._------- ----~

090 HSDT 0.8303 0.6227 0.3387 -0.0695
10 FSDT 0.8236 06171 0.3343 -0.0720

CST 0.8405 0.6312 0.3462 -0.0644

HSDT 0.0269 0.0251 0.0227 0.0151
100 FSDT 0.0269 0.0251 0.0227 0.0151

CST 0.0269 0.0251 0.0227 0.0151

0900 HSDT -0.1254 -0.1465 -0.1807 -0.1980
10 FSDT -01255 -0.1465 -0.1808 -0.1980

CST -0.1251 -0.1466 -0.1808 -0.1982

HSDT -0.0176 -0.0184 -0.0196 -0.0185
100 FSDT -0.0176 -0.0184 -0.0196 -00185

CST -0.0176 -0.0184 -0.0196 -0.0185
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